3,3-Diferrocenylcyclopropene

Elena I. Klimova ${ }^{\text {a,* }}$, Marcos Martínez García ${ }^{\text {b }}$, Tatiana Klimova ${ }^{\text {a }}$, José M. Mendez Stivalet ${ }^{\text {a }}$, Simón Hernández Ortega ${ }^{\text {b }}$, Lena Ruíz Ramírez ${ }^{\text {a }}$
${ }^{\text {a }}$ Facultad de Quimica Circuito Interior, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, CP 04510 México, DF, Mexico
${ }^{\mathrm{b}}$ Instituto de Quimica, Universidad Nacional Autónoma de México, Cd. Universitaria, Coyoacán, CP 04510 México, DF, Mexico

Received 12 March 2002; accepted 26 June 2002

Abstract

Dehydrohalogenation of isomeric 2-chloro- and 2-bromo-1,1-diferrocenylcyclopropanes (Z - and E-isomers with respect to the 'bisecting' ferrocenyl substituent) under the action of $\mathrm{Bu}^{t} \mathrm{OK}$ in DMSO afforded 3,3-diferrocenylcyclopropene. In solution, this underwent facile opening of the small ring to give 3-ferrocenyl-1H-cyclopentaferrocene ($\sim 55 \%$) and 1,1-diferrocenylpropene (15%). The spatial structure of Z-2-chloro-1,1-diferrocenylcyclopropane and 1,1-diferrocenylcyclopropane were elucidated by X-ray diffraction analysis of a single crystal. © 2002 Elsevier Science B.V. All rights reserved.

Keywords: Ferrocene; Ferrocenylcyclopropane; Ferrocenylcyclopropene; Dehydrohalogenation; Ferrocenylallylic cation; Ferrocenylcarbenoid; 3Membered ring opening

1. Introduction

Recently, we have reported [1-4] on the synthesis of crystalline 3-phenyl-, 3-(1-naphthyl)-, and 3-isopropyl-3ferrocenylcyclopropenes ($\mathbf{1 a - c}$), their spatial structures, and some chemical transformations.

The conformations of these ferrocenylcyclopropenes were established by X-ray diffraction analysis. It was shown that the ferrocenyl substituents occupy the 'bisecting' positions relative to the cyclopropene rings in all three cases. The aryl and alkyl substituents are arranged in 'non-bisecting' fashion.

1a

1b

1c

[^0]The 'through-space' interactions of the molecular orbitals of the ethylene and aryl fragments in compounds 1a and 1b determine the stereoselectivities of intramolecular transformations of these compounds. For instance, they easily undergo acid-induced or thermal opening of the 3 -membered ring to give ferrocenylallylic cations $\mathbf{2 a}, \mathbf{b}$ or carbenoid intermediates $\mathbf{3 a}, \mathbf{b}$, which recyclize into compounds $\mathbf{4 a}, \mathbf{b}$ and $\mathbf{5 a}, \mathbf{b}$ involving only the aryl fragment leaving the ferrocenyl group unaffected (Scheme 1).

In compound $\mathbf{1 c}$, the molecular orbitals of the ethylene fragment of the small ring cannot interact with the orbital of the cyclopentadiene ring of ferrocene [4]. It is the absence of this interaction that is the reason for the predominant formation of the linear products $\mathbf{6 a - c}$ upon intramolecular transformations of 3-alkyl-3ferrocenylcyclopropenes. It is noteworthy that 3-isopro-pyl- $1 H$-cyclopentaferrocene 7 was also obtained as a minor product ($\sim 4 \%$) upon intramolecular alkylation of the ferrocenyl fragment (Scheme 2).

The formation of this minor product seems to result from the change in the spatial orientation of the ferrocenyl substituent upon rotation about the sesquialteral $C(1)-C(2)$ bond in the intermediates $2 c$ and $3 c$ despite rather high energy barrier [5,6].

Scheme 1.
Thus, the existence of 'non-bisecting' ferrocenyl substituents in compounds of the cyclopropane and cyclopropene series remained questionable. It is quite reasonable to assume that this might be realized if two ferrocenyl groups were attached to the same carbon atom of a small ring, one of the groups being 'bisecting' $\left(\mathrm{Fc}^{1}\right)$ and the other 'non-bisecting' $\left(\mathrm{Fc}^{2}\right)$. In this case, intramolecular transformations of a three-membered ring should occur in a highly diastereoselective manner to result in predominant formation of alkylation products of the 'non-bisecting' ferrocenyl substituent.

To check this assumption, we have synthesized 3,3differocenylcyclopropene $1 \mathbf{d}$ and studied some its chemical properties.

2. Results and discussion

2,2-Dichloro- and 2,2-dibromo-1,1-diferrocenylcyclopropanes $\mathbf{8 a}$ and $\mathbf{8 b}$ served as the starting compounds for the synthesis of the target 3,3-differocenylcyclopro-
pene 1d. These were prepared according to Scheme 3 [714].

Compounds 8a, 9-12 were obtained smoothly in $50-$ 70% yields, the dibromide $\mathbf{8 b}$ was isolated in 32% yield.
Dichloro- and dibromodiferrocenylcyclopropanes 8a,b are crystalline pale-yellow compounds, which decompose rapidly on heating. The dichloride 8a was much more storage-stable than the dibromide $\mathbf{8 b}$ even in the crystalline state. The latter turns dark after storage for several hours, while the former remained unchanged even after prolonged storage (~ 2 months).
In solutions $\left(\mathrm{CH}_{3} \mathrm{CN}, \mathrm{CHCl}_{3}+\right.$ pyridine $)$, the dibromide $\mathbf{8 b}$, unlike the dichloride 8a, undergoes solvolysis, which results in the opening of the small ring and formation of 1,1-diferrocenylallene 13 (Scheme 4).

The structure of compound $\mathbf{1 3}$ was confirmed by the data from ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$-NMR spectroscopy (see Section 3) and elemental analysis.

Dihalides $\mathbf{8 a}$ and $\mathbf{8 b}$ were reduced by a mixture of ethylmagnesium chloride and titanium tetraisopropoxide [8] to give 1,1-diferrocenyl-2-halogenocyclopropanes as $\sim 1: 1$ mixtures of geometrical isomers ($Z-$ and E with respect to the 'bisecting' ferrocenyl substituents, 15a, 16a and 15b, 16b, respectively) in low overall yields ($\sim 15-20 \%$). In addition, 1,1-diferrocenylcyclopropane 14, representing the total reductive dehalogenation product, and ring-opening products, viz. 1,1,-diferrocenylpropene $\mathbf{1 7}$ and 3 -ferrocenyl- $1 H$ cyclopentaferrocene 7a, were isolated from the reaction mixtures (Scheme 5).

$\mathrm{X}=\mathrm{Cl}(\mathrm{a}), \mathrm{Br}(\mathrm{b})$

Scheme 3.

3c

Scheme 2.

Scheme 4.

Scheme 5.
Variations of the reaction conditions did not result in any increase in the yields of the monohalides $\mathbf{1 5}$ and $\mathbf{1 6}$. Despite the formation of mixtures of reaction products, compounds $\mathbf{1 4}, \mathbf{1 5 a}, \mathbf{1 5 b}$ (or $\mathbf{1 6 a}, \mathbf{1 6 b}$), $\mathbf{1 7}$, and $\mathbf{7 b}$ could be isolated by chromatography on alumina. The respective ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra corroborate completely their structures (see Section 3).

The assignment of the monohalides $\mathbf{1 5 a}, \mathbf{1 6 a}$ and $\mathbf{1 5 b}$, $\mathbf{1 6 b}$ to the Z - and E-isomeric series has been carried out based on their ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectroscopic data with account of the previously established NMR criteria for the assignment of Z - and E-isomers of bromo(ferrocenyl)cyclopropane with the 'bisecting' ferrocenyl substituent $[1,3,10-12]$. Thus the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the cis isomers (15a, 16a) contain two doublets of doublets at δ 1.33 and 1.90 and at $\delta 1.36$ and 1.94 , respectively, belonging to the methylene protons (AB-portion of the ABM spin system). In the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the isomeric compounds $(\mathbf{1 5 b}, \mathbf{1 6 b})$, the methylene protons resonate at $\delta 1.50$ and $1.69(\mathbf{1 5 b})$ and at $\delta 1.49$ and 1.70 (16b). As can be seen, larger $\Delta \delta$ values $\left(\Delta \delta=\delta_{\mathrm{A}}-\delta_{\mathrm{B}}=\right.$ 0.57 and 0.58 ppm$)$ are typical of the cis-isomers 15 a and 16a in contrast to the trans isomers $\mathbf{1 5 b}$ and 16b ($\Delta \delta=0.19$ and 0.21 ppm). This difference has previously been observed in the ${ }^{1} \mathrm{H}$-NMR spectra of the Z - and E isomers of ferrocenyl(halogeno)cyclopropanes studied so far [1,3,9-11].

The Z-configuration of one of the monohalides obtained, viz. 2-chloro-1,1-diferrocenylcyclopropane 15a, was confirmed additionally by the X-ray diffraction analysis (Table 1). The general view of the molecule 15a

Table 1
Crystal data, data collection and refinement parameters for compounds $\mathbf{1 4}$ and 15a

Data	14	15a
Molecular formula	$\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Fe}_{2}$	$\mathrm{C}_{46} \mathrm{H}_{42} \mathrm{Cl}_{2} \mathrm{Fe}_{4}$
Formula weight ($\mathrm{g} \cdot \mathrm{mol}^{-1}$)	410.11	889.10
Temperature (K)	291	293
Crystal system	Monoclinic	Monoclinic
Space group	P2(1)	$P 2_{1} / n$
$a(\AA)$	7.383(10)	17.209(3)
b (Å)	9.967(2)	12.611(3)
$c(\AA)$	12.967(3)	17.320(3)
$\alpha\left({ }^{\circ}\right)$	90.0	90.0
$\beta\left({ }^{\circ}\right.$	102.77(3)	94.23(2)
$\gamma\left({ }^{\circ}\right)$	90.0	90.0
$V\left(\AA^{3}\right)$	930.6(3)	3748.6(13)
Z	2	4
$D_{\text {calc }}\left(\mathrm{Mg} \mathrm{mm}^{-3}\right)$	1.464	1.575
Absorption coefficient (mm^{-1})	1.560	1.694
$F(000)$	424	1824
Radiation, λ (\AA)	Mo- $\mathrm{K}_{\alpha}, 0.71073$	Mo- $\mathrm{K}_{\alpha}, 0.71073$
Monochromator	Graphite	Graphite
θ range (${ }^{\circ}$)	1.61-25.00	1.61-25.00
Reflections collected	7585	6819
Reflections independent	3261	6585
$R_{\text {int }}$	0.0374	0.1779
Final R indices [$I>2 \sigma(I)$]	$R_{1}=0.0274, w R_{2}=0.0610$	$R_{1}=0.1093, w R_{2}=0.2958$
R indices (all data)	$R_{1}=0.0316, w R_{2}=0.0623$	$R_{1}=0.1621, w R_{2}=0.3206$
Data/restraints/parameters	3261/1/327	6585/0/470
Refinement method	Full-matrix-least-squares on F^{2}	Full-matrix-least-squares on F^{2}
Goodness-of-fit	0.953	1.033
Mininum/maximum residual electron density (e \AA^{-3})	-0.230/0.267	-0.912/1.219
Weighting scheme	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.1693 P)^{2}+10.77 P\right], \text { where } \\ & P=\left(F_{0}^{2}+2 \mathrm{Fe}^{2}\right) / 3 \end{aligned}$	$\begin{aligned} & w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.1693 P)^{2}+10.77 P\right], \text { where } \\ & P=\left(F_{0}^{2}+2 \mathrm{Fe}^{2}\right) / 3 \end{aligned}$

is given in Fig. 1 and packing of the molecules on the crystals is shown in Fig. 2. An interesting feature of the crystal structure of this compound is the presence, in the unit cell, of twins molecules of chlorocyclopropanes arranged closely pairwise with oppositely directed chlorine atoms. This fact together with the low stability of compound 15a even in the crystalline state hampered considerably the X-ray study. However, the results

Fig. 1. Crystal structure of compound 15a. Selected bond lengths (\AA) : $\mathrm{C}(11)-\mathrm{C}(12)=1.513(16) ; \quad \mathrm{C}(11)-\mathrm{C}(13)=1.540(15) ; \quad \mathrm{C}(12)-\mathrm{C}(13)=$ $1.480(2) ; \quad \mathrm{C}(1)-\mathrm{C}(11)=1.466(17) ; \quad \mathrm{C}(11)-\mathrm{C}(14)=1.519(16) ; \quad \mathrm{Cl}(1)-$ $\mathrm{C}(12)=1.753(15) ; \quad \mathrm{C}(34)-\mathrm{C}(36)=1.478(18) ; \quad \mathrm{C}(34)-\mathrm{C}(35)=$ $1.520(19) ; \mathrm{C}(35)-\mathrm{C}(36)=1.50(2)$. Selected bond angles $\left({ }^{\circ}\right): \mathrm{C}(12)-$ $\mathrm{C}(13)-\mathrm{C}(11)=60.0(7) ; \mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(13)=58.2(9) ; \mathrm{C}(13)-\mathrm{C}(12)-$ $\mathrm{C}(11)=61.8(8) ; \quad \mathrm{C}(13)-\mathrm{C}(12)-\mathrm{Cl}(1)=119.1(11) ; \quad \mathrm{C}(11)-\mathrm{C}(12)-$ $\mathrm{Cl}(1)=122.5(10) ; \quad \mathrm{C}(1)-\mathrm{C}(11)-\mathrm{C}(14)=113.4(9) ; \quad \mathrm{C}(1)-\mathrm{C}(11)-$ $\mathrm{C}(13)=120.9(11) ; \quad \mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(14)=113.9(10) ; \quad \mathrm{C}(36)-\mathrm{C}(34)-$ $\mathrm{C}(35)=60.1(9) ; \mathrm{C}(36)-\mathrm{C}(35)-\mathrm{C}(34)=58.6(9) ; \mathrm{C}(34)-\mathrm{C}(36)-\mathrm{C}(35)=$ 61.3(9).
obtained corroborate completely the cis-configuration of the monohalide 15a.

The three-membered ring in the structure $\mathbf{1 5 a}$ represents a scalene triangle (Fig. 1). The lengths of the $\mathrm{C}(11)-\mathrm{C}(13)$ and $\mathrm{C}(34)-\mathrm{C}(35)$ bonds are somewhat larger $[1.540(15)$ and $1.520(19) \AA$], while those of the $C(12)-C(13)$ and $C(34)-C(36)$ bonds are somewhat smaller [1.480(2) and $1.478(18) \AA$, respectively], than the standard values (the typical $\mathrm{C}-\mathrm{C}$ bond length in cyclopropanes being $\sim 1.51 \AA[15,16])$. The angles of rotations of the cyclopentadiene ring planes of the Fc^{1} and Fc^{2} fragments correspond to the 'bisecting' and 'non-bisecting' positions relative to the three-membered ring planes, the former being in cis-orientation with respect to the chlorine atom. The $\mathrm{Fe}-\mathrm{C}$ bond lengths and the geometry of the ferrocene sandwiches demonstrate no deviations from the ordinary ones [4].

The spatial orientation of the ferrocenyl substituents at $\mathrm{C}(1)$ of the cyclopropane ring was additionally confirmed by X-ray diffraction analysis of single crystals of 1,1-diferrocenylcyclopropane 14 obtained by crystallization from ether (Table 1). The general view of the molecule $\mathbf{1 4}$ is shown in Fig. 3 and its crystal packing is presented in Fig. 4. The geometrical parameters, the interatomic distances, and bond angles are given in the legend to Fig. 3 and do not require any additional comments. The ferrocenyl substituent Fc^{1} occupies the 'bisecting' position, and Fc^{2} occupies the 'non-bisecting' position relatively to the small ring plane (Fig. 4), as this is observed in the molecule 15a.

Dehydrohalogenation of the diferrocenyl(halogeno)cyclopropanes $\mathbf{1 5 a}, \mathbf{b}$ and $\mathbf{1 6 a}, \mathbf{b}$ under the action of $\mathrm{Bu}^{t} \mathrm{OK}$ in DMSO [1-4,12] resulted in a low yield ($\sim 20 \%$) of 3,3-diferrocenylcyclopropene 1d. Three byproducts were also isolated, viz. 3-ferrocenyl-1 H -cyclopentaferrocene 7b ($\sim 30-40 \%$), 1,1-diferrocenylpropene

Fig. 2. Crystal packing of 15a.

Fig. 3. Crystal structure of compound 14. Selected bond lengths (\AA) : $\mathrm{C}(21)-\mathrm{C}(22)=1.512(4) ; \quad \mathrm{C}(21)-\mathrm{C}(23)=1.516(4) ; \quad \mathrm{C}(22)-\mathrm{C}(23)=$ $1.494(5) ; \quad \mathrm{C}(1)-\mathrm{C}(21)=1.516(4) ; \quad \mathrm{C}(11)-\mathrm{C}(21)=1.560(4) ; \quad \mathrm{C}(11)-$ $\mathrm{C}(12)=1.439(4) ; \quad \mathrm{C}(1)-\mathrm{C}(5)=1.420(5)$. Selected bond angles $\left({ }^{\circ}\right)$: $\mathrm{C}(23)-\mathrm{C}(22)-\mathrm{C}(21)=60.55(19) ; \quad \mathrm{C}(22)-\mathrm{C}(23)-\mathrm{C}(21)=60.3(2)$; $\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(23)=59.1(2) ; \mathrm{C}(1)-\mathrm{C}(21)-\mathrm{C}(11)=115.4(2) ; \mathrm{C}(12)-$ $\mathrm{C}(11)-\mathrm{C}(21)=129.1(2) ; \quad \mathrm{C}(5)-\mathrm{C}(1)-\mathrm{C}(21)=124.4(3) ; \quad \mathrm{C}(2)-\mathrm{C}(1)-$ $\mathrm{C}(21)=128.2(4) ; \mathrm{C}(22)-\mathrm{C}(21)-\mathrm{C}(11)=119.1(2)$.
$17(\sim 10-20 \%)$, and 1,1-diferrocenylcyclopropane 14 ($\sim 15-20 \%$) (Scheme 6).

The cyclopropene $\mathbf{1 d}$ is a pale-yellow crystalline compound, which decomposes rapidly on storage under ordinary conditions. In solutions, even at $0{ }^{\circ} \mathrm{C}$, this isomerizes into compounds 7b (up to 55%) and $\mathbf{1 7}$ ($\sim 15 \%$). Our attempts to grow crystals of the cyclopropene 1d and perform X-ray diffraction analysis of its spatial structure failed. However, a comparative analysis of spatial structures of the known 1-aryl-2-bromo-1ferrocenylcyclopropanes, 1-aryl-1-ferrocenylcyclopropanes and the derived 3-aryl-3-ferrocenylcyclopropenes [1-4], taking into account the known data on the considerable steric effects at the $C(3)$ atom of the

1d
Scheme 6.

Scheme 7.
cyclopropene ring [17-19] (even in 3,3-dimethylcyclopropene), allows us to suggest that the spatial orientation of the ferrocenyl substituents in 3,3diferrocenylcyclopropene (1d) is the same as in the parental monohalides $\mathbf{1 5 a}, \mathbf{b}$ and 16a,b.

Compounds $\mathbf{7 b}$ and $\mathbf{1 7}$ seen to result from the threemembered ring-opening in the monohalides $\mathbf{1 5}$ and $\mathbf{1 6}$ under the action of Lewis acids (magnesium and titanium salts) yielding 1,1-diferrocenylallylic cation (2d) and from the low-temperature thermolysis of the cyclopropene 1d to yield diferrocenylcarbenoid (3d) (Scheme 7).

These transient species are stabilized by two ferrocenyl substituents and one of them, viz., the 'nonbisecting' one, undergoes intramolecular alkylation. Alternatively, these intermediates undergo reduction. Analogous reduction has been observed by us previously [$1-4,9-12$] and seems to involve the iron atom.

Thus, the results of this study confirm the 'nonbisecting' orientation of one ferrocene substituent in gem-diferrocenylcyclopropene 1d and monohalogenocyclopropanes $\mathbf{1 5}$ and 16. Intramolecular transformations of this compounds occur with high regioselectivities and result predominantly in the alkylation product of the

Fig. 4. Crystal packing of $\mathbf{1 4}$.
'non-bisecting' ferrocenyl substituent, i.e. 3-ferrocenyl1 H -cyclopentaferrocene (7b).

3. Experimental

The ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded on a Unity Nova Varian spectrometer (300 and 75 MHz) for solutions in CDCl_{3} with $\mathrm{Me}_{4} \mathrm{Si}$ as the internal standard. Isolation of compounds was carried out by column chromatography on alumina (Brockmann activity III) and by preparative TLC on silica-gel. The X-ray diffraction patterns were recorded on a Siemens P4/PC diffractometer. The crystallographic data, the experimental conditions, and corrections are given in Table 1. The chemical reactions were carried out in an atmosphere of dry argon and in absolute grade solvents.

The following reagents were purchased from Aldrich: ferrocenecarboxylic acid (97\%), ferrocene (98\%), methyllithium (1.4 M solution in diethyl ether), ethylmagnesium chloride (2.0 M solution in diethyl ether), titanium(IV) isopropoxide (97%), $\mathrm{Bu}^{t} \mathrm{OK}$ (95%), and phosphorus pentachloride (95%).

3.1. Diferrocenylketone (10)

Phosphorus pentachloride (6.9 g) was added portionwise to a suspension of ferrocenecarboxylic acid (6.9 g , 0.03 mol) in dry benzene (80 ml), the mixture was stirred for 20 min at room temperature (r.t.), and the solvent was removed in vacuo. The residue (orange oil) was dissolved in dichloromethane (200 ml) containing ferrocene $(6.6 \mathrm{~g}, 0.035 \mathrm{~mol})$. This solution was added dropwise over $\sim 1 \mathrm{~h}$ to a suspension of $\mathrm{AlCl}_{3}(4.0 \mathrm{~g}$, $0.03 \mathrm{~mol})$ in dichloromethane (200 ml), the mixture was stirred for 1 h at $20{ }^{\circ} \mathrm{C}$, and poured into ice water (500 ml). The organic layer was separated, washed with water and the solvent was evaporated in vacuo. The residue was crystallized from isopropyl alcohol to give orange crystals of differocenyl ketone, yield $5.2 \mathrm{~g}(50 \%)$, m.p. 203-204 ${ }^{\circ} \mathrm{C}$ (lit. m.p. $204{ }^{\circ} \mathrm{C}$ [13]). ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta): 4.20$ $\left(10 \mathrm{H}, \mathrm{s}, 2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.53\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.99(4 \mathrm{H}, \mathrm{m}$, $\mathrm{C}_{5} \mathrm{H}_{4}$).

3.2. 1,1-Diferrocenylethanol (11)

An ethereal solution of methyllithium (0.03 mol) was added with stirring to a solution of diferrocenyl ketone (10) (4.0 g. 0.01 mol$)$ in dry benzene $(100 \mathrm{ml})$ and stirring was continued for an additional 1 h . The reaction mixture was then treated with 50% aqueous (aq.) NaOH , the organic layer was separated, washed with water, and dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was removed in vacuo and the residue was crystallized from propan-1-ol to yield $2.92 \mathrm{~g}(70 \%)$ of the alcohol 11 as yellow crystals, m.p. $221-223{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta): 1.88$
$\left(3 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{3}\right), 2.59(1 \mathrm{H}, \mathrm{s}, \mathrm{OH}), 4.09\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.11$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.19\left(10 \mathrm{H}, \mathrm{s}, 2 \mathrm{C}_{5} \mathrm{H}_{5}\right)$. Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{Fe}_{2} \mathrm{O}: \mathrm{C}, 63.80 ; \mathrm{H}, 5.36 ; \mathrm{Fe}, 26.98$. Found: C, 63.67; H, 5.48; Fe, 27.11\%.

3.3. 1,1-Diferrocenylethylene (12)

Alumina (50 g , Brockmann activity II) was added to a solution of the alcohol $11(4.14 \mathrm{~g}, 0.01 \mathrm{~mol})$ in chloroform (50 ml) and the mixture was kept for a day in a hood. The red-colored alumina was applied onto a $30-$ cm layer of pure alumina (Brockmann activity III) and the alkene 12 was eluted with hexane, yield $2.8 \mathrm{~g}(70 \%)$, red crystals, melting point (m.p.) $163-164{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR $(\delta): 4.15\left(10 \mathrm{H}, \mathrm{s}, 2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.27\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.62\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 5.42\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\right)$ Anal. Calc. for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{Fe}_{2}: \mathrm{C}, 66.71 ; \mathrm{H}, 5.09 ; \mathrm{Fe}, 28.20$. Found: C, 66.54; H, 5.27; Fe, 28.41\%.

3.4. 2,2-Dichloro-1,1-diferrocenylcyclopropan (8a) [14]

A solution of 1,1-diferrocenylethylene (12) (3.96 g, $0.01 \mathrm{~mol})$ in chloroform (40 ml) was mixed with 50% aq. $\mathrm{NaOH}(40 \mathrm{ml})$, dichloromethane (100 ml), and benzyltriethylammonium chloride (1 g). The mixture was stirred whereupon spontaneous boiling up occurred. Stirring was continued for 1 h and the mixture was poured into ice water (200 ml). The organic layer was washed with water, dried with MgSO_{4}, and concentrated in vacuo. The residue was chromatographed on alumina in hexane to give compound $8 \mathbf{a}$ in a yield of 3.21 g (67%), yellow powder, decomposes at $\sim 178{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR (δ): $2.24\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.13$ $\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.14\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.175\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.195\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Cl}_{2} \mathrm{Fe}_{2}$: C, 57.66; $\mathrm{H}, 4.20 ; \mathrm{Cl}, 14.82 ; \mathrm{Fe}, 23.32$. Found: C, 57.87; H, 4.08; Cl, 14.73; Fe, 23.49\%.

3.5. 2,2-Dibromo-1,1-diferrocenylcyclopropane (8b) [12,20,21]

Bromoform (15 ml) was added dropwise to a vigorously stirred mixture of 50% aq. NaOH , benzyltriethylammonium chloride $(0.5 \mathrm{~g})$, and $1,1-$ diferrocenylethylene (12) ($4.0 \mathrm{~g}, 0.01 \mathrm{~mol}$) at $25-$ $35{ }^{\circ} \mathrm{C}$. Then the mixture was stirred for 4 h at r.t. and poured into ice water (300 ml). The reaction products were extracted with chloroform $(3 \times 100 \mathrm{ml})$, the extract was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The residue was chromatographed on alumina in hexane to yield $1.83 \mathrm{~g}(32 \%)$ of the dibromide $\mathbf{8 b}$ as yellow crystals, which darkened in air rapidly, decomposes at $\sim 130{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta): 2.37\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}\right), 4.05(2 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.116\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.123\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.18$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.25\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta): 32.46$ (C), $36.19\left(\mathrm{CH}_{2}\right), 37.53(\mathrm{C}), 66.08(2 \mathrm{C}), 66.74$ (2C),
69.63, 69.96, 70.60, $71.45\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right)$, 69.38, $69.41\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right)$, 94.20, $94.36\left(2 \mathrm{C}_{i p s o} \mathrm{Fc}\right)$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Br}_{2} \mathrm{Fe}_{2}$: C, 48.64; H, 3.55; Br, 28.14; Fe, 19.67. Found: C, 48.49; H, 3.71; 28.23; Fe, 19.51\%.

3.6. Solvolysis of 2,2-dibromo-1,1diferrocenylcyclopropane ($\mathbf{8 b}$)

A solution of the dibromide $\mathbf{8 b}(0.57 \mathrm{~g}, 0.001 \mathrm{~mol})$ in a mixture of chloroform (10 ml) and pyridine $(0.5 \mathrm{ml})$ was kept at r.t. for 7 days. The solvent was evaporated in vacuo and the residue was subjected to TLC on alumina in hexane to give $0.17 \mathrm{~g}(41 \%)$ of 1,1-diferrocenylallene (13), $R_{\mathrm{f}} 0.78$, yellow crystals, m.p. $128-129{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR $(\delta): 3.96\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.03\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.10$ $\left(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}_{2}=\right), 4.28\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.286\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.293\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.97\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta)$: 66.87, 67.31, 70.67, $70.97\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.52,69.68\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right)$, 87.85, $88.74\left(2 \mathrm{C}_{\text {ipso }} \mathrm{Fc}\right), 112.56\left(\mathrm{CH}_{2}=\right), 116.55,124.69$ (2C). Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Fe}_{2}: \mathrm{C}, 67.70 ; \mathrm{H}, 4.93$; Fe , 27.37. Found: C, 67.56; H, 5.08; Fe, 27.54\%.

3.7. Reduction of the dihalides $\mathbf{8 a}$ and $\mathbf{8 b}$

A solution of $\mathrm{EtMgCl}(6 \mathrm{mmol})$ in ether and several drops of $\mathrm{Ti}\left(\mathrm{OPr}^{i}\right)_{4}$ were added with stirring to a solution of the dichloride $8 \mathbf{a}(2.4 \mathrm{~g}, 5.0 \mathrm{mmol})$ or the dibromide $\mathbf{8 b}(2.84 \mathrm{~g}, 5.0 \mathrm{mmol})$ in dry tetrahydrofuran $(100 \mathrm{ml})$. The mixture was stirred for 3 h at r.t. and quenched with water (50 ml). The organic layer was separated, washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$, and concentrated in vacuo and the residue was subjected to TLC on silica-gel (hexane-ether, 10:1).

The following products were obtained from the dichloride 8a: 1,1-diferrocenylcyclopropane (14), $0,26 \mathrm{~g}$ $(13 \%), R_{\mathrm{f}} 0.75$, yellow crystals, m.p. $147-149{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR (δ): $1.20\left(4 \mathrm{H}, \mathrm{s}, 2 \mathrm{CH}_{2}\right), 3.94\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.05$ $\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.10\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.11\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right)$. ${ }^{13} \mathrm{C}-\mathrm{NMR}(\delta): 17.82(\mathrm{C}), 19.24\left(2 \mathrm{CH}_{2}\right), 66.69,67.52$ $\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.40\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 96.78\left(2 \mathrm{C}_{i p s o} \mathrm{Fc}\right)$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Fe}_{2}$: C, 67.36; H, 5.40; $\mathrm{Fe}, 27.24$. Found: C, 67.49; H, 5.27; Fe, 27.37\%.

1,1-Diferrocenylpropene (17), $0.2 \mathrm{~g}(10 \%), R_{\mathrm{f}} 0.68$, yellow crystals, m.p. $136-138{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(\delta): 1.98$ $\left(3 \mathrm{H}, \mathrm{d}, J=7.5 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 4.09\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.13(5 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 4.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.23\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.49$ $\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.51\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.23(1 \mathrm{H}, \mathrm{q}, J=7.5$ $\mathrm{Hz}, \mathrm{CH}=) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta): 19.22\left(\mathrm{CH}_{3}\right), 67.19,67.39$, 68.17, $69.71\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right), 69.21,69.32\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 84.38$, $90.41\left(2 \mathrm{C}_{\text {ipso }} \mathrm{Fc}\right)$, $123.27(\mathrm{CH}=), 133.46(\mathrm{C}=)$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{Fe}_{2}$: $\mathrm{C}, 67.36 ; \mathrm{H}, 5.40 ; \mathrm{Fe}, 27.24$. Found: C, 67.54; H, 5.18; Fe, 27.43\%.

Z-2-chloro-1,1-diferrocenylcyclopropane (15a), 0.25 g $(11 \%), R_{\mathrm{f}} 0.60$, yellow crystals, decomposes at $\sim 162{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta): 1.33\left(1 \mathrm{H}, \mathrm{dd}, J=4.8,5.7 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.90$ $\left(1 \mathrm{H}, \mathrm{dd}, J=5.7,7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.94(1 \mathrm{H}, \mathrm{dd}, J=4.8,7.5$
$\mathrm{Hz}, \mathrm{CH}), 3.83\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.01\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.04$ $\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.05\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.07\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.16\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.18\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.21(3 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta): 24.46\left(\mathrm{CH}_{2}\right), 25.25(\mathrm{C}), 43.68$ (CH), 66.50, 67.00, 67.20, 67.42, 67.83, 68.01, 68.87, 69.03 $\left(2 \mathrm{C}_{5} \mathrm{H}_{4}\right), 68.53,68.69\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 90.26,94.96\left(2 \mathrm{C}_{\text {ipso }} \mathrm{Fc}\right)$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClFe}_{2}$: C, 62.13; H, 4.76; Cl, 7.99; Fe, 25.12. Found: C, 62.24; H, 4.58; Cl, 8.12; Fe, 25.21\%.
E-2-chloro-1,1-diferrocenylcyclopropane (15b), 0.2 g $(9 \%), R_{\mathrm{f}} 0.54$, yellow crystals, decomposes at $\sim 170{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta): 1.40\left(1 \mathrm{H}, \mathrm{dd}, J=2.7,7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.69$ $\left(1 \mathrm{H}, \mathrm{dd}, J=4.2,7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.92(1 \mathrm{H}, \mathrm{dd}, J=2.7,4.2$ $\mathrm{Hz}, \mathrm{CH}), 4.03\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.06\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.08$ $\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.12\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.16\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.21\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{ClFe}_{2}: \mathrm{C}$, 62.13; H, 4.76; Cl, 7.99; Fe, 25.12. Found: C, 61.97; H, 4.99; Cl, 7.84; Fe, 25.27\%.

3-Ferrocenyl-1 H -cyclopentaferrocene (7b), 0.7 g $(33 \%), R_{\mathrm{f}} 0.36$, orange crystals, m.p. $153-154{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR $(\delta): 2.80\left(2 \mathrm{H}, \mathrm{d}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 4.11(5 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 4.15\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.20(2 \mathrm{H}, \mathrm{m}), 4.24(2 \mathrm{H}, \mathrm{m})$, $4.26(1 \mathrm{H}, \mathrm{m}), 4.55(2 \mathrm{H}, \mathrm{m})\left(\mathrm{C}_{5} \mathrm{H}_{3}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 6.20(1 \mathrm{H}, \mathrm{t}, J=$ $7.3 \mathrm{~Hz}, \mathrm{CH}=) .{ }^{13} \mathrm{C}-\mathrm{NMR}(\delta): 30.59\left(\mathrm{CH}_{2}\right), 67.32,67.55$, 68.33, 68.55, 69.24, 69.53, $69.77\left(\mathrm{C}_{5} \mathrm{H}_{4}, \mathrm{C}_{5} \mathrm{H}_{3}\right), 69.29$, $69.44\left(2 \mathrm{C}_{5} \mathrm{H}_{5}\right), 84.45,90.27,98.73\left(3 \mathrm{C}_{\text {ipso }} \mathrm{Fc}\right), 128.95$ $(\mathrm{CH}=), 133.38(\mathrm{C})$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Fe}_{2}: 67.69 ; \mathrm{H}$, 4.94; Fe, 27.37. Found: C, 67.82; H, 4.79; Fe, 27.49\%.

The following products were obtained from the dibromide 8b: 1,1-diferrocenylcyclopropane (14), 0,37 $\mathrm{g}(18 \%)$, m.p. $148{ }^{\circ} \mathrm{C}$; 1,1-diferrocenylpropene (17) 0.24 g (12\%), m.p. $137-138{ }^{\circ} \mathrm{C} ; \boldsymbol{Z}$-2-bromo-1,1-diferrocenylcyclopropane ($\mathbf{1 6 a}$), $0.4 \mathrm{~g}(16 \%), R_{\mathrm{f}} 0.56$, yellow powder, decomposes at $\sim 163{ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(\delta): 1.34(1 \mathrm{H}$, dd, $\left.J=4.8,5.9 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.89\left(1 \mathrm{H}, \mathrm{dd}, J=5.9,7.6 \mathrm{~Hz}, \mathrm{CH}_{2}\right)$, $3.92(1 \mathrm{H}, \mathrm{dd}, J=4.8,7.6 \mathrm{~Hz}, \mathrm{CH}), 3.82\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$, $4.00\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.02\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.03(5 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 4.06\left(1 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.17\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.19(1 \mathrm{H}$, $\left.\mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.21\left(3 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right)$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BrFe}_{2}$: $\mathrm{Br}, 16.34$; $\mathrm{C}, 56.50$; $\mathrm{H}, 4.33$; $\mathrm{Fe}, 22.83$. Found: $\mathrm{Br}, 16.18$; C, 56.34 ; H, 4.58; Fe, 22.99%; E-2-bromo-1,1-diferrocenylcyclopropane (16b), $0.34 \mathrm{~g}(14 \%)$, $R_{\mathrm{f}} 0.45$, yellow powder, decomposes at $\sim 168{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR $(\delta): 1.42\left(1 \mathrm{H}, \mathrm{dd}, J=3,5,6.0 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.69(1 \mathrm{H}$, $\left.\mathrm{dd}, J=6.0,7.5 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 3.92(1 \mathrm{H}, \mathrm{dd}, J=3.5,7.5 \mathrm{~Hz}$, $\mathrm{CH}), 4.00\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.04\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.10(5 \mathrm{H}, \mathrm{s}$, $\left.\mathrm{C}_{5} \mathrm{H}_{5}\right), 4.14\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.18\left(2 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 4.22(2 \mathrm{H}$, $\mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}$). Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{21} \mathrm{BrFe}_{2}$: $\mathrm{Br}, 16.34 ; \mathrm{C}$, 56.50; H, 4.33; Fe, 22.83. Found: Br, 16.12; C, 56.73; H, $4.52 ; \mathrm{Fe}, 22.68 \%$; 3-ferrocenyl-1 H -cyclopentaferrocene (7b), $0.61 \mathrm{~g}(30 \%)$, m.p. $154{ }^{\circ} \mathrm{C}$.

3.8. Dehydrohalogenation of diferrocenyl(halogeno)cyclopropanes (15a,b) and (16a,b)

A mixture of a diferrocenyl(halogeno)cyclopropane $\mathbf{1 5 a}, \mathbf{1 5 b}, \mathbf{1 6 a}$, or $\mathbf{1 6 b}(3 \mathrm{mmol})$ and $\mathrm{Bu}^{t} \mathrm{OK}(4 \mathrm{mmol})$ in
$\mathrm{Me}_{2} \mathrm{SO}\left(30 \mathrm{ml}\right.$) was stirred for 7 h at $\sim 35-45{ }^{\circ} \mathrm{C}$. Benzene (100 ml) and water (50 ml) were then added, the organic layer was washed with water and concentrated in vacuo. The residue was subjected to TLC on alumina in hexane to give:

1,1-diferrocenylcyclopropane (14), yield $0.18-0.25 \mathrm{~g}$ ($15-20 \%$), $R_{\mathrm{f}} 0.70$, m.p. $147-149{ }^{\circ} \mathrm{C}$.
3,3-Diferrocenylcyclopropene (1d), yield $0.20-0.25 \mathrm{~g}$ ($18-21 \%$), $R_{\mathrm{f}} 0.64$, yellow powder, m.p. 131-132 ${ }^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$-NMR (δ): $3.80\left(4 \mathrm{H}, \mathrm{m}, \mathrm{C}_{5} \mathrm{H}_{4}\right), 3.94(4 \mathrm{H}, \mathrm{m}$, $\left.\mathrm{C}_{5} \mathrm{H}_{4}\right), 4.06\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 4.08\left(5 \mathrm{H}, \mathrm{s}, \mathrm{C}_{5} \mathrm{H}_{5}\right), 6.96$ $(2 \mathrm{H}, \mathrm{s}, \mathrm{CH}=)$. Anal. Calc. for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{Fe}_{2}$: $\mathrm{C}, 67.69$; H, 4.94; $\mathrm{Fe}, 27.37$. Found: C, 67.86; H, 5.04; Fe, 27.13\%.

1,1-Diferrocenylpropene (17), yield $0.12-0.24 \mathrm{~g}$ ($10-$ 20%), $R_{\mathrm{f}} 0.57$, m.p. $137^{\circ} \mathrm{C}$.
3-Ferrocenyl-1 H-cyclopentaferrocene 7, yield 0.36 $0.48 \mathrm{~g}(30-40 \%), R_{\mathrm{f}} 0.30$, m.p. $154{ }^{\circ} \mathrm{C}$.

3.9. Thermolysis of 3,3-diferrocenylcyclopropene (1d)

A solution of the cyclopropene $\mathbf{1 d}(0.4 \mathrm{~g}, 1 \mathrm{mmol})$ in benzene (50 ml) was stirred for 1 h at $\sim 20{ }^{\circ} \mathrm{C}$. The solvent was evaporated in vacuo, and the residue was subjected to TLC on silica-gel (hexane-ether, 10:1) to give $0.06 \mathrm{~g}(15 \%)$ of the alkene $17, R_{\mathrm{f}} 0.70$, m.p. $136-$ $138{ }^{\circ} \mathrm{C}$, and compound $7 \mathbf{7 b}$, yield $0.25 \mathrm{~g}(61 \%), R_{\mathrm{f}} 0.40$, m.p. $154{ }^{\circ} \mathrm{C}$.

4. Supplementary material

Crystallographic data for the structural analysis have been deposited with the Cambridge Crystallographic Data Centre, CCDC nos. 186890 and 178187 for compounds 14 and 15a, respectively. Copies of this information may be obtained free of charge from The Director, CCDC, 12 Union Road, Cambrige CB2 IEZ, UK (Fax: +44-1223-336033; e-mail: deposit@ccdc. cam.ac.uk or www: http://www.ccdc.cam.ac.uk).

Acknowledgements

This work was supported by the grant CONACyT (Mexico, grant $34862-E$). We would like to thank Oscar Salvador Yañez Muñoz for the technical assistance.

References

[1] E.I. Klimova, T. Klimova Berestneva, L. Ruiz Ramirez, M. Martinez Garcia, C. Alvarez Toledano, P.G. Espinosa, R.A. Toscano, J. Organomet. Chem. 544 (1997) 130.
[2] E.I. Klimova, T. Klimova Berestneva, L.R. Ramirez, M. Martinez Garcia, C. Alvarez Toledano, P.G. Espinosa, R.A. Toscano, J. Organomet. Chem. 545-546 (1997) 191.
[3] E.I. Klimova, M. Martinez Garcia, T. Klimova, C. Alvarez Toledano, R.A. Toscano, R. Moreno Esparza, L. Ruiz Ramirez, J. Organomet. Chem. 566 (1998) 175.
[4] E.I. Klimova, M. Martinez Garcia, T. Klimova, C. Alvarez Toledano, R.A. Toscano, L. Ruiz Ramirez, J. Organomet. Chem. 598 (2000) 254.
[5] G.A. Olah, R.J. Spear, J. Am. Chem. Soc. 97 (1975) 1539.
[6] W.G. Young, S.U. Sharman, S. Winstein, J. Am. Chem. Soc. 82 (1960) 1376.
[7] H. Alper, S.M. Kepner, J. Org. Chem. 39 (1974) 2303.
[8] N.V. Bovin, L.S. Surmina, N.I. Yakushkina, I.G. Bolesov, Zh. Org. Khim. 13 (1977) 1888.
[9] E.I. Klimova, V.N. Postnov, C.A. Toledano, J.G. Lara, R.A. Toscano, M.M. Garcia, Dokl. Akad. Nauk 344 (1995) 639.
[10] E.I. Klimova, S. Alvarez Toledano, M. Martinez Garcia, J. Gomez Lara, N.N. Meleshonkova, I.G. Bolesov, Russ. Chem. Bull. 45 (1996) 613.
[11] E.I. Klimova, L. Ruiz Ramirez, T. Klimova Berestneva, M. Martinez Garcia, R. Moreno Esparsa, C. Alvarez Toscano, Russ. Chem. Bull. 47 (1998) 482.
[12] E.J. Klimova, L. Ruiz Ramirez, R. Moreno Esparza, T. Klimova, B.M. Martinez Garcia, N.N. Meleshonkova, A.V. Churakov, J. Organomet. Chem. 559 (1998) 1.
[13] M.D. Rausch, E.O. Fischer, H. Grubert, J. Am. Chem. Soc. 82 (1960) 76.
[14] R. Goker, J. Org. Chem. 38 (1973) 1913.
[15] R.E. Long, H. Maddok, K.N. Trueblood, Acta Crystallogr. Sect. B 25 (1969) 2083.
[16] A. Hartman, F.L. Hirschfeld, Acta Crystallogr. Sect. B 20 (1964) 80.
[17] D.N. Reinhoudt, P. Smael, Tetrahedron Lett. (1973) 3755.
[18] S. Wawzonek, B.J. Studnicka, A.R. Zigman, J. Org. Chem. 34 (1969) 1316.
[19] D.F. Eaton, R.G. Bergman, G.S. Hammond, J. Am. Chem. Soc. 94 (1972) 1351.
[20] E.I. Klimova, N.N. Meleshonkova, V.N. Postnov, C. Alvarez Toledano, J. Gomez Lara, M. Martinez Garcia, Dokl. Akad. Nauk 344 (1995) 498.
[21] V.V. Plemenkov, J.Z. Giniyatov, Y.A. Ya. Villem, N.V. Villem, L.S. Surmina, I.G. Bolesov, Dokl. Akad. Nauk SSSR 254 (1980) 895.

[^0]: * Corresponding author. Fax: +525-622-5366

 E-mail address: klimova@servidor.unam.mx (E.I. Klimova).

